The Gaussian Minimum Entropy Conjecture

\&
 ITS IMPORTANCE FOR THE INFORMATION CAPACITY OF GAUSSIAN BOSONIC CHANNELS

Raul Garcia-Patron, Carlos Navarrete, Seth Lloyd, Jeff H. Shapiro, and Nicolas J. Cerf

Intn'I Center for Information \& Uncertainty, Palacký University, Olomouc, March 15, 2012

 czech republic
INVESTMENTS IN EDUCATION DEVELOPMENT

Outline

- Gaussian bosonic channels Classical capacity of quantum channels Gaussian minimum (output) entropy conjecture
- Link with entanglement of a 2-mode squeezer Gaussian minimum (output) entanglement conjecture
- Connection with majorization theory (Stronger) Gaussian majorization conjecture Incomplete proof of the conjecture (Fock state inputs)
- Conclusions - importance for physics problems !
... new path to the ultimate proof?

Motivation: perfect (noiseless) channel

Shannon theory

Numerous communication links modeled by a classical Gaussian additive-noise channel

..... we need quantum mechanics to calculate the ultimate limits of communication!
Quantum theory Gaussian quantum channels H. P. Yuen, and M. Ozawa, PRL 1993

$$
C(M)=\max _{\rho} S(\rho)=(\nu+1) \log (\nu+1)-v \log (\nu) \quad \text { for identity channel }
$$

Finite capacity for finite input energy, achieved by a thermal state of \mathcal{v} photons

Gaussian (quantum) Bosonic channels

- Corresponds to linear CP maps $\quad \rho \rightarrow M[\rho]$
s.t. $M[\rho]$ Gaussian if ρ Gaussian
- M fully characterized by two matrices K, N

$$
\begin{array}{ll}
\vec{r} \rightarrow K \vec{r} \\
\gamma \rightarrow K_{\Delta} \gamma K^{T}+N \quad \begin{array}{l}
\text { real }
\end{array} \quad \begin{array}{l}
\vec{r}=\text { coherent vector } \\
\gamma=\text { covariance matrix }
\end{array} \\
\text { real symmetric }
\end{array}
$$

one-mode case

- M completely positive

$$
N \geq 0 \quad \operatorname{det} N \geq(\operatorname{det} K-1)^{2}
$$

$$
\begin{aligned}
& K=\operatorname{diag}(\sqrt{\mathbf{\tau}}, \sqrt{\mathbf{\tau}}) \\
& N=\operatorname{diag}(n, n)
\end{aligned}
$$

$$
\mathrm{M}\left\{\begin{array}{l}
\mathrm{T}=\text { transmission } \\
n=\text { noise variance }
\end{array} \quad \mathrm{II} \longrightarrow \mathrm{M}(\rho)\right.
$$

Purely lossy channel

(our analysis is focused on phase-insensitive channels w.n.l.g. ())

Classical Capacity of Quantum Channels

M

 $\| M\left(\rho_{a}\right)$encoding $\left\{p_{a}, \rho_{a}\right\}$ such that $\sum_{a} p_{a} \rho_{a}=\rho$

$$
a=1, \ldots d
$$

Holevo bound $\chi\left(\left\{p_{a}, \rho_{a}\right\}, M\right)=S(M(\rho))-\sum_{a} p_{a} S\left(M\left(\rho_{a}\right)\right)$
Single-shot capacity $C^{(1)}(M)=\max _{\left\{p_{a}, \rho_{a}\right\}} \chi\left(\left\{p_{a}, \rho_{a}\right\}, M\right)$
Capacity $C(M)=\lim _{n \rightarrow \infty} \frac{1}{n} C^{(1)}\left(M^{\times n}\right) \quad M^{\times n}$
... in general, not additive !
(Hastings, Nature Phys. 2009)

Minimum Output Entropy

encoding $\left\{p_{a}, \rho_{a}\right\}$ such that $\sum_{a} p_{a} \rho_{a}=\rho$

$$
a=1, \ldots d
$$

$C^{(1)}(M)=\max _{\rho} \tilde{\chi}(\rho, M) \quad \ldots$ maximization in 2 steps
with $\tilde{\chi}(\rho, M) \equiv S(M(\rho))-$ min

$$
\underbrace{\sum_{a} p_{a} S\left(M\left(\rho_{a}\right)\right)}_{\geq S\left(M\left(\Phi_{0}\right)\right)}
$$

$$
\leq S(M(\rho))-S\left(M\left(\Phi_{0}\right)\right)
$$

\Longrightarrow we need to find pure state Φ_{0} minimizing output entropy

$$
\min _{\sigma} S(M(\sigma)) \equiv S\left(M\left(\Phi_{0}\right)\right)
$$

Capacity of Gaussian Quantum Channels

Yuen and Ozawa, 1993
Holevo and Werner, 1998
continuous encoding
energy constraint

$$
\rho_{\alpha} \| \square M\left(\rho_{a}\right)
$$

$$
\text { encoding }\left\{p(\alpha), \rho_{\alpha}\right\} \text { such that } \int d^{2} \alpha p(\alpha) \rho_{\alpha}=\rho
$$

$$
C^{(1)}(M)=\max _{\rho} \tilde{\chi}(\rho, M)
$$

$$
\leq \max _{\rho} S(M(\rho))-S\left(M\left(\Phi_{0}\right)\right)
$$

for fixed energy, achieved by a thermal state

4 minimum output entropy state ???

$$
S\left(M\left(\rho_{\text {therm }}\right)\right)
$$

Gaussian minimum output entropy conjecture: $\quad \Phi_{0}=|0\rangle\langle 0|$

Conjectured Single-shot Capacity

encoding $\left\{p(\alpha), \rho_{\alpha}\right\}$ such that $\int d^{2} \alpha p(\alpha) \rho_{\alpha}=\rho$
$C^{(1)}(M) \leq S\left(M\left(\rho_{\text {therm }}\right)\right)-S(M(|0\rangle / 0 \mid)$ Φ_{0}
use encoding

$$
\rho_{\alpha}=D(\alpha)|0\rangle\langle 0| D(\alpha)^{+}
$$

$$
p(\alpha)=\frac{1}{\pi v} \exp \left(\frac{-|\alpha|^{2}}{v}\right)
$$

with $\quad v=$ mean thermal photon number
$C^{(1)}(M)=g[\tau \nu+n]-g[n] \quad$ where $g[x]=(x+1) \log (x+1)-x \log (x)$
coherent states modulated with a Gaussian bivariate distribution do achieve the capacity (it is the optimal encoding)
... provided the Gaussian minimum entropy conjecture holds !

Gaussian Minimum Entropy Conjecture

$$
\min _{\sigma} S(M(\sigma))=S(M(|0\rangle\langle 0|))
$$

- The same conjecture is made for the joint channel $M^{\times n}$
then, $\quad C(M) \equiv \lim _{n \rightarrow \infty} \frac{1}{n} C^{(1)}\left(M^{\times n}\right)=C^{(1)}(M)$
All papers (>30) on the topic of Gaussian bosonic channels rely on this widely admitted conjecture !!!

Single exception: pure lossy channel (environment E in vacuum state)

$$
C^{(1)}(M)=g[\tau \vee]
$$

V. Giovannetti et al., PRL, 2004

Generic Decomposition of Phase-insensitive Channels

- $\tau=T G<1$ lossy fiber with thermal noise
$\tau=T G=1$ classical Gaussian additive noise
- $\tau=T G>1$ (non-ideal) noisy amplifier

Reduction of the Conjecture

Conjecture I $\quad \min _{\sigma} S(M(\sigma))=S(M(|0\rangle\langle 0|))$

$$
\begin{aligned}
& \sigma \xrightarrow[\mathrm{L}]{\mathrm{L}} \xrightarrow[\mathrm{~L}]{\longrightarrow} \xrightarrow{\longrightarrow} \xrightarrow[\mathrm{A}]{\longrightarrow} \mathrm{M}(\sigma) \\
& \tilde{\sigma}=L(\sigma) \\
& =A(\tilde{\sigma})
\end{aligned}
$$

Conjecture II $\quad \min _{\tilde{\sigma}} S(A(\tilde{\sigma}))=S(A(|0\rangle\langle 0|))$

$$
S(M(\sigma) \mid=S(A(\tilde{\sigma}) \mid \geq S(A(|0\rangle\langle 0|))
$$

it is (necessary and) sufficient to prove the reduced conjecture II

Link with Output Entanglement of a Two-Mode Squeezer

We are now dealing with the output entanglement of a two-mode squeezer

$$
U(r)=\exp \left(\frac{r}{2}\left(a b-a^{+} b^{+}\right)\right)
$$

$$
G=\cosh ^{2} r
$$

Gaussian Minimum Entanglement Conjecture

Conjecture I $\left.\quad \min _{\sigma} S(M(\sigma))=S(M(\mid 0)\langle 0|)\right)$

Conjecture II (bis) $\quad \min _{\phi} E\left(|\Phi\rangle_{A B}\right)=E\left(|V\rangle_{A B}\right)$

Proof for Gaussian vs non-Gaussian states

- easy to prove for Gaussian states

$$
E\left(\left|\Phi_{\text {Gauss }}\right\rangle_{A B}\right) \geq E\left(|V\rangle_{A B}\right)
$$

- expansion of non-Gaussian states in Fock basis

$$
|\phi\rangle_{A}=\sum_{k} c_{k}|k\rangle^{\wedge} \text { Fock states }
$$

... only an incomplete proof for Fock states !

Fock State Inputs

$$
\begin{aligned}
& E(k)=H\left[P_{n}(k)\right] \text { Shannon entropy } \\
& P_{n}(k)=\frac{1}{\cosh ^{2(k+1)} r}\binom{n+k}{n} \tanh ^{2 n} r
\end{aligned}
$$

$$
\left|\Psi_{k}\right\rangle=\sum_{n=0}^{\infty} \sqrt{P_{n}(k)}|n+k\rangle|n\rangle
$$

Using Pascal identity $\binom{n+k+1}{n}=\binom{n+k}{n}+\binom{n+k}{n-1}$

$$
P_{n}(k+1)=\left(1-\lambda^{2}\right) P_{n}(k)+\lambda^{2} P_{n-1}(k+1) \quad \text { with } \lambda=\tanh r
$$

Concavity of entropy

$$
E(k+1) \geqslant\left(1-\lambda^{2}\right) E(k)+\lambda^{2} E(k+1)
$$

$$
E(k+1) \geqslant E(k) \quad \forall k \geq 0
$$

Fock State Inputs

This is the tip of the iceberg of majorization theory...

$$
E(k+1) \geqslant E(k) \quad \forall k \geq 0 \quad \forall r
$$

| | 0 | 0 | 1 | 1.0 | 1.2 | 1.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Majorization Theory = (partial) order relation for probability distributions

if and only if

with p_{n}, q_{n} probability distributions

- p_{n} can be converted to q_{n} by applying a random permutation

$$
q_{n}=\sum_{m} D_{n, m} p_{m} \quad D_{n, m} \text { is doubly-stochastic matrix }
$$

or $\quad \sum_{n=0}^{m} p_{n}^{\downarrow} \geq \sum_{n=0}^{m} q_{n}^{\downarrow} \quad \forall m \geq 0 \quad$ (p is "more peake
or $\quad \sum_{n} h\left(p_{n}\right) \leq \sum_{n} h\left(q_{n}\right) \quad \forall h(x)$ concave function
e.g. entropy: $h(x)=-x \log (x)$
$\Longleftrightarrow H\left(p_{n}\right) \leq H\left(q_{n}\right) \quad$ entropy can only increase

Quantum case : Interconversion of pure bipartite states

M. Nielsen, G. Vidal, 2000
p_{n}, q_{n} probability distributions

LOCC

$|\psi\rangle$ majorizes $|\phi|$

$$
\begin{aligned}
& |\psi\rangle=\sum_{n} \sqrt{p_{n}}\left|e_{n}\right\rangle\left|f_{n}\right\rangle \quad|\phi\rangle=\sum_{n} \sqrt{q_{n}}\left|e_{n}{ }^{\prime}\right\rangle\left|f_{n}^{\prime}\right\rangle \\
& \text { with } p_{n} \text { majorizing } q_{n}
\end{aligned}
$$

- $|\phi\rangle$ can be converted to $|\psi\rangle$ by applying a deterministic LOCC
- $E(|\Psi\rangle) \leq E(|\phi\rangle) \quad$ entanglement can only decrease

Trick: $\rho_{A}=\operatorname{tr}_{B}(|\psi\rangle\langle\psi|)=\sum_{n} p_{n} \underbrace{\left|e_{n}\right\rangle\left\langle e_{n}\right|}_{\text {orthonormal }} \quad$ eigenbasis representation
$=\sum_{n} q_{n} \underbrace{\left|\zeta_{n}\right\rangle\left\langle\zeta_{n}\right|}_{\text {not orthonormal }}$ provided p_{n} majorizes q_{n}

Explicit conversion LOCC

LOCC

$|\psi\rangle$ majorizes $\mid \phi$

$$
|\psi\rangle=\sum_{n} \sqrt{p_{n}}\left|e_{n}\right\rangle\left|f_{n}\right\rangle
$$

$$
|\psi\rangle=\sum_{n} \sqrt{q_{n}}\left|\zeta_{n}\right\rangle\left|f_{n}^{\prime \prime}\right\rangle \quad \text { above trick (provided } p_{n} \text { majorizes } q_{n} \text {) }
$$

$$
|\phi\rangle=\sum_{n} \sqrt{\operatorname{Locc}} \hat{q_{n}}\left|e_{n}^{\prime}\right\rangle\left|f_{n}^{\prime}\right\rangle
$$

POVM: $A_{m}=\sum_{n} \omega^{n m}\left|\zeta_{n}\right\rangle\left\langle e_{n}{ }^{\prime}\right|$ with $\omega=\mathrm{e}^{i 2 \pi / d}$ and $\sum_{m} A_{m}^{+} A_{m}=I$

$$
\left(A_{m} \times I\right)|\phi\rangle=\sum_{n} \sqrt{q_{n}} \omega^{n m}\left|\zeta_{n}\right\rangle\left|f_{n}{ }^{\prime}\right\rangle \equiv\left|\phi_{m}\right\rangle \quad \text { depends on outcome } \mathrm{m}
$$

Conditional U: $\quad B_{m}=\sum_{n} \omega^{-n m}\left|f_{n}^{\prime \prime}\right\rangle\left\langle f_{n}^{\prime}\right| \quad$ conditional on m

$$
\left(I \times B_{m}\right)\left|\phi_{m}\right\rangle=\sum_{n} \sqrt{q_{n}}\left|\zeta_{n}\right\rangle\left|f_{n}^{\prime \prime}\right\rangle \equiv|\psi\rangle
$$

Gaussian Majorization Conjecture

For a given 2-mode squeezer (Bogoliubov transformation), the 2-mode vacuum squeezed state majorizes all other output states !!!

Conjecture III $\quad|V\rangle_{A B}$ majorizes $|\Phi\rangle_{A B} \quad \forall|\phi\rangle_{A}$

$$
|V\rangle_{A B} \stackrel{\text { Locc }}{ }|\Phi|_{A B} \quad \text { implying } \quad E\left(|V\rangle_{A B}\right) \leq E\left(|\Phi\rangle_{A B}\right)
$$

... stronger than minimum output entropy conjecture
... but perhaps easier to prove (?)

Majorization relations in a 2-mode squeezer

$k=4 \quad k=3 \quad k=2$

(as a function of k given r)

$$
\begin{aligned}
\vec{P}^{(k+1)} & =D \vec{P}^{(k)} \quad \forall k \quad \forall r \\
D_{n, m} & =\left(1-\lambda^{2}\right) \lambda^{2 n} H(n-m) \\
\lambda & =\tanh r \\
H & \equiv \text { Heaviside step function }
\end{aligned}
$$

| 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 | r |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Explicit LOCC

$$
\begin{aligned}
\left|\Psi_{k}\right\rangle & =\sum_{n=0}^{\infty} \sqrt{p_{n}(k)}|n+k\rangle|n\rangle \\
\left|\Psi_{k+1}\right\rangle & =\sum_{n=0}^{\infty} \sqrt{p_{n}(k+1)}|n+k+1\rangle|n\rangle
\end{aligned}
$$

Alice applies a POVM

$$
\begin{aligned}
& A_{\mathrm{YES}}=\sum_{m=0}^{\infty} \sqrt{\frac{\left(1-\lambda^{2}\right) p_{m}(k)}{p_{m}(k+1)}}|m+k\rangle\langle m+k+1| \\
& A_{N O}=\sum_{m=0}^{\infty} \sqrt{\frac{\lambda^{2} p_{m-1}(k+1)}{p_{m}(k+1)}}|m+k\rangle\langle m+k+1|
\end{aligned}
$$

$$
\begin{equation*}
\left(A_{\mathrm{YES}} \times 1\right)\left|\Psi_{k+1}\right\rangle=\sqrt{\left(1-\lambda^{2}\right)} \sum_{n=0}^{\infty} \sqrt{p_{n}(k)}|n+k\rangle|n\rangle=\sqrt{\left(1-\lambda^{2}\right)}\left|\Psi_{k}\right\rangle \tag{YES}
\end{equation*}
$$

$$
\left(A_{N O} \times 1\right)\left|\Psi_{k+1}\right\rangle=\sqrt{\lambda^{2}} \sum_{n=0}^{\infty} \sqrt{p_{n}(k+1)}|n+k+1\rangle|n+1\rangle \rightarrow \sqrt{\lambda^{2}}\left|\Psi_{k+1}\right\rangle
$$

If "NO" she communicates it to Bob who applies $U=\sum_{m=0}^{\infty}|m\rangle\langle m+1|$
and then they start a new round again

Majorization relations in a 2-mode squeezer

$$
k=4 \quad k=3 \quad k=2
$$

$E\left(\left|\Psi^{(k)}\right\rangle\right)$
(as a function of r given k)

$$
p_{n}^{(k)}\left(X^{\prime}\right)=\sum_{m=0}^{n} r_{m}^{(k, n-m)} p_{n-m}^{(k)}(\lambda)
$$

$$
r_{m}^{(k, n)}=\alpha\left[L_{m}^{(k, n)} \lambda^{\prime 2}-L_{m-1}^{(k, n+1)} \lambda^{2}\right] \lambda^{\prime 2(m-1)},
$$

$$
\alpha=\binom{n+k}{k}^{-1}\left(\left(1-\lambda^{2}\right) /\left(1-\lambda^{2}\right)\right),
$$

$$
L_{m}^{(k, n)}=n\binom{n+k}{k}\binom{m+k}{k} \lambda^{-2 n} B\left(\lambda^{2} ; n, 1+k\right)
$$

$$
\vec{P}_{r^{\prime}}^{(k)}=R^{(k)} \vec{P}_{r}^{(k)} \quad \forall r^{\prime}>r \quad \forall k
$$

Arbitrary superposition of Fock states

${ }_{4} E\left(|\phi|_{A B}\right)$
numerical evidence
$\sqrt{(0.4)} \mid 0)+\sqrt{(0.6)} \mid 1$
majorized by $|0\rangle \quad \forall r$

Arbitrary superposition of Fock states

4. $E\left(|\phi|_{A B}\right)$ more complicated than it looks !

$$
\sqrt{(0.4)}|0\rangle+\sqrt{(0.6)} \mid 1
$$

$\sqrt{(0.4)}|1\rangle+\sqrt{(0.6)} \mid 2$
not majorized by $|1\rangle$

This is a fundamental problem

(even if you don't care about quantum channels !)

Bogoliubov transformation $\hat{a}_{i}{ }^{\prime}=\sum_{j}\left(u_{i j} \hat{a}_{j}+v_{i j} \hat{a}_{j}^{+}\right)$is everywhere
(e.g., quantum optics, supraconductivity, Hawking radiation, Unruh effect,...)
... this conjecture may have deeper implications !

ALTERNATE TITLE: can we prove that ... " \mathcal{N} othing is less than vacuum"? (Cess random than the vacuum state)

Take-home message

" \mathcal{N} othing is Cess than the vacuum "
very plausible but not (yet) proven !

New approach to solve the "Minimum Output Entropy Conjecture" for Gaussian bosonic channels

- Reduction to ideal amplifier channel
- Output entanglement of a two-mode squeezer
- Link with majorization theory (currently, Fock states only)

Numerical analysis for random input states strongly suggests that (majorization) conjecture is true...

See: R. Garcia-Patron, C. Navarrete-Benlloch, S. Lloyd, J. H. Shapiro \& N. J. Cerf, PRL 108, 110505 (2012).

