Eduard Bartl：Minimal Solutions of Several Types of Fuzzy Relational Equations

Preliminaries

We need the following concepts introduced in［2］．

Aggregation Structure

Definition 1．A sup－preserving aggregation structure （aggregation structure，for short）$\left\langle\mathbf{L}_{1}, \mathbf{L}_{2}, \mathbf{L}_{3}, \square\right\rangle$ ，where $\mathbf{L}_{i}=\left\langle L_{i}, \leq_{i}\right\rangle, i=1,2,3$ ，are complete lattices and $\square: L_{1} \times L_{2} \rightarrow L_{3}$ is a function which commutes with suprema in both arguments．Define operations ${ }_{\square}: L_{1} \times L_{3} \rightarrow L_{2}, \square^{\circ}: L_{3} \times L_{2} \rightarrow L_{1}$ by

$$
\begin{aligned}
& a_{1}^{\circ} \square a_{3}=\bigvee_{2}\left\{a_{2} \mid a_{1} \square a_{2} \leq_{3} a_{3}\right\}, \\
& a_{3} \square^{\circ} a_{2}=\bigvee_{1}\left\{a_{1} \mid a_{1} \square a_{2} \leq_{3} a_{3}\right\} .
\end{aligned}
$$

Moreover，define operation ${ }_{\square}^{\mathrm{op}}: L_{3} \times L_{2} \rightarrow L_{1}$（needed only for scalar－by－scalar equations）by

$$
a_{3}{ }_{\square}^{\text {op }} \circ a_{2}= \begin{cases}\bigwedge_{1}\left\{a_{1} \mid a_{1} \square a_{2} \geq_{3} a_{3}\right\}, & \text { if exists } a_{1} \in L_{1} \\ a_{1} \square a_{2} \geq 3, \\ 0_{2}, & \text { otherwise. },\end{cases}
$$

Consider two important examples of aggreg．struct．In both cases，$\langle L, \wedge, \mathrm{v}, \otimes, \rightarrow, 0,1\rangle$ is a complete residuated lattice．$L_{i}=L$ and \leq_{i} is either \leq or the dual of \leq ．
Example 1． $\mathbf{L}_{1}=\langle L, \leq\rangle, \mathbf{L}_{2}=\langle L, \leq\rangle, \mathbf{L}_{3}=\langle L, \leq\rangle, \square=\otimes$ ： $a_{1} \circ_{\square} a_{3}=\bigvee\left\{a_{2} \mid a_{1} \otimes a_{2} \leq a_{3}\right\}=a_{1} \rightarrow a_{3}$, $a_{3} \square^{\circ} a_{2}=\bigvee\left\{a_{1} \mid a_{1} \otimes a_{2} \leq a_{3}\right\}=a_{3} \leftarrow a_{2}$.
Example 2． $\mathbf{L}_{1}=\langle L, \leq\rangle, \mathbf{L}_{2}=\left\langle L, \leq^{-1}\right\rangle, \mathbf{L}_{3}=\left\langle L, \leq^{-1}\right\rangle$ ， $\square=\rightarrow$ ：

$$
\begin{aligned}
& a_{1} \circ \square a_{3}=\bigwedge\left\{a_{2} \mid a_{1} \rightarrow a_{2} \geq a_{3}\right\}=a_{1} \otimes a_{3}, \\
& a_{3} \square^{\circ} a_{2}=\bigvee\left\{a_{1} \mid a_{1} \rightarrow a_{2} \geq a_{3}\right\}=a_{3} \rightarrow a_{2} .
\end{aligned}
$$

General Product of Fuzzy Relations
Definition 2．For an aggregation structure
$\left\langle\mathbf{L}_{1}, \mathbf{L}_{2}, \mathbf{L}_{3}, \square\right\rangle$ ，and fuzzy relations $R \in L_{1}^{X \times Y}, S \in L_{2}^{Y \times Z}$ ， let a fuzzy relation $R \square S \in L_{3}^{X \times Z}$ be defined by

$$
(R \boxtimes S)(x, z)=\bigvee_{3 y \in Y}(R(x, y) \square S(y, z))
$$

Product ■ generalizes both sup－t－norm product（o）and inf－residuum product（ 4 ）：
for the setting of Example 1：R 曰 $S=R \circ S$ ，
：for the setting of Example 2：R 凹 $S=R \triangleleft S$ ．
Definition 3．For $R \in L_{1}^{X \times Y}$ and $S \in L_{3}^{Y \times Z}$ ，let
$R \triangleleft \square S \in L_{2}^{X \times Z}$ and $R_{\square} \triangleleft S \in L_{1}^{X \times Z}$ be defined by
$(R \triangleleft \square)(x, z)=\bigwedge_{2 y \in Y}\left(R(x, y) \circ_{\square} S(y, z)\right)$,
$\left(R_{\square} \square^{S}\right)(x, z)=\bigwedge_{1 y \in Y}\left(R(x, y) \square^{\circ} S(y, z)\right)$ ．

Fuzzy Relation Equations

Fuzzy relational equations play an important role in fuzzy set theory and its applications．Namely，it is often the case that the problem in a particular application of fuzzy logic may be transformed to the problem of identification an unknown fuzzy relation．
The problem to determine an unknown fuzzy relation R between universe sets X and Y such that

$$
R \text { 凹 } S=T \text {, }
$$

where S and T are given（known）fuzzy relations between Y and Z ，and X and Z ，respectively，and \square is an operation of composition of fuzzy relations，is called the problem of fuzzy relational equations．Alternatively， given R and T ，the problem is to determine S ．
Denotation：

$$
U \text { 回 } S=T \quad \text { and } \quad R \text { 回 } U=T \text {, }
$$

where U is the unknown fuzzy relation．

Solvability Criteria

Theorem 4．Let $R \in L_{1}^{X \times Y}, S \in L_{2}^{Y \times Z}$ ，and $T \in L_{3}^{X \times Z}$ be fuzzy relations．Then
：：U 回 $S=T$ has a solution iff $T \square \triangleleft S^{-1}$ is its solution， ：：$R \square U=T$ has a solution iff $R^{-1} \triangleleft_{\square} T$ is its solution
Theorem 5．If an equation U 回 $S=T$ is solvable then the set of all solutions along with \subseteq_{1} forms a complete join－semilattice with the greatest element

$$
T_{\square \triangleleft} S^{-1} .
$$

If an equation R 回 $U=T$ is solvable then the set of all solutions along with \subseteq_{2} forms a complete join－semilattice with the greatest element

$$
R^{-1} \triangleleft T .
$$

Corollary 6．An equation $U \circ S=T$ is solvable iff $\left(S \triangleleft T^{-1}\right)^{-1}$ is its solution．An equation $R \circ U=T$ is solvable iff $R^{-1} \triangleleft T$ is its solution．

All Solutions vs．Minimal Solutions
We assume two solutions $R^{\prime}, R^{\prime \prime}$ of U 回 $S=T$ ，and fuzzy relation $R \in L_{1}^{X \times Y}$ such that $R^{\prime} \subseteq_{1} R \subseteq_{1} R^{\prime \prime}$ ．Since ${ }^{\text {a }}$ is isotone in both arguments，we can write
which implies that R is a solution of U 回 $S=T$ as well．
In other words，a set of all solutions of $U \square S=T$ w．r．t． \complement_{1} is a convex set．Therefore，we just need to find all minimal solutions．

Minimal Solutions

＂Scalar－by－Scalar Equation＂
Let $u \in L_{1}, s \in L_{2}, t \in L_{3}$ ，define scalar－by－scalar equation： $u \square s=t$
（1）
Theorem 7．If equation（1）is solvable then for every its solution $r \in L_{1}$ it holds $r \in\left[t \square_{\square} s, t_{\square}^{\mathrm{OD}} \circ s\right]$ ．
Lemma 8．Let L_{1} be a finite chain．If there is $a_{1} \in L_{1}$ such that $a_{1} \square a_{2} \geq_{3} a_{3}$ then $a_{1}{ }^{\text {op }}{ }^{\circ} a_{3}=a_{1} \square^{\circ} a_{3}$ ．
Corollary 9．Let L_{1} be a finite chain．Equation（1）is solvable ifft $t_{\square} s$ is its solution．
＂Vector－by－Vector Equation＂
Let $\left(u_{j}\right) \in L_{1}^{Y},\left(s_{j}\right) \in L_{2}^{Y}, t \in L_{3}, j \in J=\{1, \ldots, n\}$ ，define vector－by－vector equation：

$$
\left(u_{1} \ldots u_{n}\right) \text { ■ }\left(\begin{array}{c}
s_{1} \tag{2}\\
\vdots \\
s_{n}
\end{array}\right)=t
$$

Theorem 10．Let \mathbf{L}_{1} be a finite chain．If there is $j^{\prime} \in J$ such that $u_{j^{\prime}} \square s_{j^{\prime}}=t$ is solvable then equation（2）has a minimal solution $R=\left(r_{1} \ldots r_{n}\right)$ such that

$$
r_{j}= \begin{cases}t_{\square \circ} s_{j}, & \text { for } j=j^{\prime}, \\ 0_{1}, & \text { otherwise. }\end{cases}
$$

＂Vector－by－Matrix Equation＂
Let $\left(u_{j}\right) \in L_{1}^{Y},\left(s_{j k}\right) \in L_{2}^{Y} \times Z,\left(t_{k}\right) \in L_{3}^{Z}, j \in J=\{1, \ldots$
$k \in K=\{1, \ldots, p\}$ ，and L_{1} be a finite chain，define vector－by－matrix equation：

$$
\left(u_{1} \ldots u_{n}\right) \text { ■ }\left(\begin{array}{cc}
s_{11} \ldots s_{1 p} \tag{3}\\
\vdots & \vdots \\
s_{n 1} \ldots s_{n p}
\end{array}\right)=\left(t_{1} \ldots t_{p}\right) .
$$

Equation（3）can be rewritten using a table \mathfrak{T} of dimension $(n+1) \times p$（meaning，the last row is V_{3} of the rows above）

$$
\begin{array}{ccc}
u_{1} \square s_{11} & \ldots & u_{1} \square s_{1 p} \\
\vdots & & \vdots \\
u_{n} \square s_{n 1} & \ldots & u_{n} \square s_{n p} \\
\hline t_{1} & \ldots & t_{p}
\end{array}
$$

Now，see what happen to the table \mathfrak{T} when we take $R=\left(r_{1} \ldots r_{n}\right)=T_{\square} \varangle S^{-1}$（the greatest solution）as a
solution of（3）． solution of（3）．
For every $j \in J$ there must be $k^{\prime} \in K$ such that

$$
r_{j}=\bigwedge_{1 k \in K}\left(t_{k} \square^{\circ} s_{j k}\right)=t_{k^{\prime} \square^{\circ}} s_{j k^{\prime}} .
$$

By K_{j} we denote the set of all indices $k^{\prime} \in K$ such that $u_{j} \square s_{j k^{\prime}}=t_{k^{\prime}}$ is solvable and $r_{j}=t_{k^{\prime}} \square^{\circ} s_{j k^{\prime}}$ ．

Minimal Solutions

Important assertions：
for each $k^{\prime} \in K_{j}, r_{j}=t_{k^{\prime}} \square^{\circ} s_{j k^{\prime}}$ is the only solution of $u_{j} \square s_{j k^{\prime}}=t_{k^{\prime}}$
：for each $k^{\prime \prime} \in K \backslash K_{j}$ we have $r_{j} \square s_{j k^{\prime \prime}}<3 t_{k^{\prime \prime}}$ ．
Define a binary table \mathfrak{B} of the dimension $(n+1) \times p$ ：

$$
\mathfrak{B}_{j k}= \begin{cases}1, & \text { if } \mathfrak{T}_{j k}=t_{k}, \\ 0, & \text { if } \mathfrak{T}_{j k}<3 t_{k},\end{cases}
$$

Obviously，the last row of the table \mathfrak{B} is filled by ones．
Definition 11．$J_{\text {cov }} \subseteq J$ is a covering of the last row of \mathfrak{B} if $\max _{j \in J_{\text {cov }}} \mathfrak{B}_{j k}=1$ for all $k \in K$ ．Covering $J_{\text {cov }} \subseteq J$ is a minimal one if there is no covering $J_{\text {cov }}^{\prime}$ such that $J_{\text {cov }}^{\prime} \subseteq J_{\text {cov }}$ ．
Example 3．Assume an equation（3）with table \mathfrak{T} $r_{1} \square s_{11}=t_{1} \quad r_{1} \square s_{12}=t_{2} \quad r_{1} \square s_{13}<3 t_{3} \quad r_{1} \square s_{14}<3 t_{4}$ $r_{2} \square s_{21}<3 t_{1} \quad r_{2} \square s_{22}<3 t_{2} \quad r_{2} \square s_{23}=t_{3} \quad r_{2} \square s_{24}=t_{4}$ $r_{3} \square s_{31}=t_{1} \quad r_{3} \square s_{32}<3 t_{2} \quad r_{3} \square s_{33}<3 t_{3} \quad r_{3} \square s_{34}=t_{4}$ $\begin{array}{cccc}r_{4} \square s_{41}<3 t_{1} & r_{4} \square s_{42}<3 t_{2} & r_{4} \square s_{43}=t_{3} & r_{4} \square s_{44}<3 t_{4} \\ t_{1} & t_{3} & t_{4}\end{array}$
Table \mathfrak{B} can be easily derived from \mathfrak{T} ：

There exist several coverings，but just two of them are the minimal ones：$\{1,2\},\{1,3,4\}$ ．
Theorem 12．Let（3）be an equation with $R=\left(r_{1} \ldots r_{n}\right)$ being the greatest solution．Every minimal solution $M=\left(m_{1} \ldots m_{n}\right)$ of（3）is in the form：

$$
m_{j}= \begin{cases}r_{j}, & \text { for } j \in J_{\mathrm{cov}}, \\ 0_{1}, & \text { otherwise }\end{cases}
$$

where $J_{\text {cov }}$ is a minimal covering of the last row of the corresponding table \mathfrak{B} ．
Minimal solutions of $U \circ S=T$（sup－t－norm equation） and $U \triangleleft S=T$（inf－residuum equation）can be described using direct consequencies of the previous results．

Future Research

developing algorithms，efficient computation of all solutions（removing duplicities），complexity issue

References

[^0]
[^0]:

