Eduard Bartl: Minimal Solutions of Several Types of Fuzzy Relational Equations

Preliminaries

We need the following concepts introduced in [2].

Aggregation Structure

Definition 1. A sup-preserving aggregation structure (aggregation structure, for short) $\langle L_1, L_2, L_3, \Box \rangle$, where $\mathbf{L}_i = \langle L_i, \leq_i \rangle$, i = 1, 2, 3, are complete lattices and $\Box: L_1 \times L_2 \rightarrow L_3$ is a function which commutes with suprema in both arguments. Define operations $\circ_{\Box}: L_1 \times L_3 \rightarrow L_2$, $\Box \circ: L_3 \times L_2 \rightarrow L_1$ by

$$a_1 \circ_{\Box} a_3 = \bigvee_2 \{a_2 \mid a_1 \Box a_2 \leq_3 a_3\},\ a_3 \Box \circ a_2 = \bigvee_1 \{a_1 \mid a_1 \Box a_2 \leq_3 a_3\}.$$

Moreover, define operation $\Box^{op} \circ : L_3 \times L_2 \to L_1$ (needed only for scalar-by-scalar equations) by

$$a_3 \overset{\text{op}}{\square} \circ a_2 = \begin{cases} \bigwedge_1 \{a_1 \mid a_1 \square a_2 \ge_3 a_3\}, \text{ if exists } a_1 \in L_1 : \\ a_1 \square a_2 \ge_3 a_3, \\ 0_2, & \text{otherwise.} \end{cases}$$

Consider two important examples of aggreg. struct. In both cases, $(L, \land, \lor, \otimes, \rightarrow, 0, 1)$ is a complete residuated lattice. $L_i = L$ and \leq_i is either \leq or the dual of \leq .

Example 1.
$$\mathbf{L}_1 = \langle L, \leq \rangle$$
, $\mathbf{L}_2 = \langle L, \leq \rangle$, $\mathbf{L}_3 = \langle L, \leq \rangle$, $\Box = \otimes$:
 $a_1 \circ_{\Box} a_3 = \bigvee \{a_2 \mid a_1 \otimes a_2 \leq a_3\} = a_1 \rightarrow a_3$,

 $a_3 \square \circ a_2 = \bigvee \{a_1 \mid a_1 \otimes a_2 \le a_3\} = a_3 \leftarrow a_2.$

Example 2. $\mathbf{L}_1 = \langle L, \leq \rangle$, $\mathbf{L}_2 = \langle L, \leq^{-1} \rangle$, $\mathbf{L}_3 = \langle L, \leq^{-1} \rangle$, $\Box = \rightarrow$

$$a_1 \circ_{\Box} a_3 = \bigwedge \{a_2 \mid a_1 \to a_2 \ge a_3\} = a_1 \otimes a_3,$$
$$a_3 {}_{\Box} \circ a_2 = \bigvee \{a_1 \mid a_1 \to a_2 \ge a_3\} = a_3 \to a_2.$$

General Product of Fuzzy Relations

Definition 2. For an aggregation structure $\langle \mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3, \Box \rangle$, and fuzzy relations $R \in L_1^{X \times Y}$, $S \in L_2^{Y \times Z}$, let a fuzzy relation $R \square S \in L_3^{X \times Z}$ be defined by

$$(R \boxdot S)(x,z) = \bigvee_{3 \ y \in Y} (R(x,y) \square S(y,z)).$$

Product <a>D generalizes both sup-t-norm product () and inf-residuum product (⊲):

:: for the setting of Example 1: $R \square S = R \circ S$, :: for the setting of Example 2: $R \square S = R \triangleleft S$. **Definition 3.** For $R \in L_1^{X \times Y}$ and $S \in L_3^{Y \times Z}$, let $R \triangleleft_{\Box} S \in L_2^{X \times Z}$ and $R \sqsubseteq \triangleleft S \in L_1^{X \times Z}$ be defined by

$$(R \triangleleft_{\Box} S)(x, z) = \bigwedge_{2 \ y \in Y} (R(x, y) \circ_{\Box} S(y, z)),$$
$$(R \square \triangleleft S)(x, z) = \bigwedge_{1 \ y \in Y} (R(x, y) \square \circ S(y, z)).$$

International Center for Information and Uncertainty SSIU 2012: International Summer School "Information and Uncertainty" http://mcin.upol.cz/SSWIU-2012/

Department of Computer Science, Palacky University, Olomouc (17. listopadu 12, CZ–77146 Olomouc, Czech Republic)

Fuzzy Relation Equations

Fuzzy relational equations play an important role in fuzzy set theory and its applications. Namely, it is often the case that the problem in a particular application of fuzzy logic may be transformed to the problem of identification an unknown fuzzy relation.

The problem to determine an unknown fuzzy relation Rbetween universe sets X and Y such that

 $R \square S = T$,

where S and T are given (known) fuzzy relations between Y and Z, and X and Z, respectively, and \square is an operation of composition of fuzzy relations, is called the problem of fuzzy relational equations. Alternatively, given R and T, the problem is to determine S.

Denotation:

 $U \square S = T$ and $R \square U = T$,

where U is the unknown fuzzy relation.

Solvability Criteria

Theorem 4. Let $R \in L_1^{X \times Y}$, $S \in L_2^{Y \times Z}$, and $T \in L_3^{X \times Z}$ be fuzzy relations. Then

: $U \square S = T$ has a solution iff $T \square \triangleleft S^{-1}$ is its solution, $R \square U = T$ has a solution iff $R^{-1} \triangleleft_{\Box} T$ is its solution.

Theorem 5. If an equation $U \boxdot S = T$ is solvable then the set of all solutions along with \subseteq_1 forms a complete join-semilattice with the greatest element

 $T \sqcap \triangleleft S^{-1}.$

If an equation $R \square U = T$ is solvable then the set of all solutions along with \subseteq_2 forms a complete join-semilattice with the greatest element

 $R^{-1} \triangleleft_{\Box} T.$

Corollary 6. An equation $U \circ S = T$ is solvable iff $(S \triangleleft T^{-1})^{-1}$ is its solution. An equation $R \circ U = T$ is solvable iff $R^{-1} \triangleleft T$ is its solution.

All Solutions vs. Minimal Solutions

We assume two solutions R', R'' of $U \square S = T$, and fuzzy relation $R \in L_1^{X \times Y}$ such that $R' \subseteq_1 R \subseteq_1 R''$. Since \square is isotone in both arguments, we can write

 $T = R' \boxdot S \subseteq_1 R \boxdot S \subseteq_1 R'' \boxdot S = T,$

which implies that R is a solution of $U \square S = T$ as well.

In other words, a set of all solutions of $U \boxdot S = T$ w.r.t. \subseteq_1 is a convex set. Therefore, we just need to find all minimal solutions.

Let $u \in L_1$, $s \in L_2$, $t \in L_3$, define scalar-by-scalar equation:

Corollary 9. Let L_1 be a finite chain. Equation (1) is solvable iff $t \square \circ s$ is its solution.

Minimal Solutions

"Scalar-by-Scalar Equation"

$$u \square s = t.$$

(1)

Theorem 7. If equation (1) is solvable then for every its solution $r \in L_1$ it holds $r \in [t \square \circ s, t \square \circ s]$.

Lemma 8. Let L_1 be a finite chain. If there is $a_1 \in L_1$ such that $a_1 \square a_2 \ge_3 a_3$ then $a_1 \square^{\text{op}} \circ a_3 = a_1 \square^{\circ} a_3$.

"Vector-by-Vector Equation"

Let $(u_j) \in L_1^Y$, $(s_j) \in L_2^Y$, $t \in L_3$, $j \in J = \{1, ..., n\}$, define vector-by-vector equation:

$$(u_1...u_n) \square \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = t.$$
 (2)

Theorem 10. Let L_1 be a finite chain. If there is $j' \in J$ such that $u_{j'} \square s_{j'} = t$ is solvable then equation (2) has a minimal solution $R = (r_1 \dots r_n)$ such that

$$r_j = \begin{cases} t \square \circ s_j, & \text{for } j = j', \\ 0_1, & \text{otherwise.} \end{cases}$$

"Vector-by-Matrix Equation"

Let $(u_j) \in L_1^Y$, $(s_{jk}) \in L_2^{Y \times Z}$, $(t_k) \in L_3^Z$, $j \in J = \{1, \dots, n\}$, $k \in K = \{1, \dots, p\}$, and L_1 be a finite chain, define vector-by-matrix equation:

$$\begin{pmatrix} u_1 \dots u_n \end{pmatrix} \boxdot \begin{pmatrix} s_{11} \dots s_{1p} \\ \vdots & \vdots \\ s_{n1} \dots s_{np} \end{pmatrix} = \begin{pmatrix} t_1 \dots t_p \end{pmatrix}.$$
(3)

Equation (3) can be rewritten using a table \mathfrak{T} of dimension $(n+1) \times p$ (meaning, the last row is \vee_3 of the rows above):

Now, see what happen to the table \mathfrak{T} when we take $R = (r_1 \dots r_n) = T \, \operatorname{restaure} S^{-1}$ (the greatest solution) as a solution of (3).

For every $j \in J$ there must be $k' \in K$ such that

By K_i we denote the set of all indices $k' \in K$ such that $u_j \square s_{jk'} = t_{k'}$ is solvable and $r_j = t_{k'} \square^{\circ} s_{jk'}$.

Minimal Solutions

Important assertions: $u_j \square s_{jk'} = t_{k'}$

 $J'_{\rm COV} \subseteq J_{\rm COV}$.

Example 3.

$$r_1 \square s_{11} = t_1$$

 $r_2 \square s_{21} <_3 t_1$
 $r_3 \square s_{31} = t_1$
 $r_4 \square s_{41} <_3 t_1$

There exist several coverings, but just two of them are the minimal ones: $\{1, 2\}, \{1, 3, 4\}$.

where J_{COV} is a minimal covering of the last row of the corresponding table \mathfrak{B} .

Minimal solutions of $U \circ S = T$ (sup-t-norm equation) and $U \triangleleft S = T$ (inf-residuum equation) can be described using direct consequencies of the previous results.

Future Research

References

:: for each $k' \in K_j$, $r_j = t_{k' \square^{\circ}} s_{jk'}$ is the only solution of

:: for each $k'' \in K \setminus K_j$ we have $r_j \square s_{jk''} <_3 t_{k''}$.

Define a binary table \mathfrak{B} of the dimension $(n+1) \times p$:

 $\mathfrak{B}_{jk} = \begin{cases} 1, & \text{if } \mathfrak{T}_{jk} = t_k, \\ 0, & \text{if } \mathfrak{T}_{jk} <_3 t_k. \end{cases}$

Obviously, the last row of the table \mathfrak{B} is filled by ones.

Definition 11. $J_{\text{COV}} \subseteq J$ is a covering of the last row of \mathfrak{B} if $\max_{i \in J_{cov}} \mathfrak{B}_{ik} = 1$ for all $k \in K$. Covering $J_{cov} \subseteq J$ is a minimal one if there is no covering J'_{COV} such that

Assume an equation (3) with table \mathfrak{T} :

-	· ·	
$r_1 \square s_{12} = t_2$	$r_1 \Box s_{13} <_3 t_3$	$r_1 \square s_{14} <_3 t_4$
$r_2 \Box s_{22} <_3 t_2$	$r_2 \square s_{23} = t_3$	$r_2 \square s_{24} = t_4$
$r_3 \square s_{32} <_3 t_2$	$r_3 \square s_{33} <_3 t_3$	$r_3 \square s_{34} = t_4$
$r_4 \Box s_{42} <_3 t_2$	$r_4 \square s_{43} = t_3$	$r_4 \Box s_{44} <_3 t_4$
to	t_2	t_A

Table \mathfrak{B} can be easily derived from \mathfrak{T} :

1	1	0	0
0	0	1	1
1	0	0	1
0	0	1	0
1	1	1	1

Theorem 12. Let (3) be an equation with $R = (r_1 \dots r_n)$ being the greatest solution. Every minimal solution $M = (m_1 \dots m_n)$ of (3) is in the form:

 $m_j = \begin{cases} r_j, & \text{for } j \in J_{\text{cov}}, \\ 0_1, & \text{otherwise}, \end{cases}$

:: developing algorithms, efficient computation of all solutions (removing duplicities), complexity issues

1 E. Bartl, R. Belohlavek, Sup-t-norm and inf-residuum are a single type of relational equations. International Journal of General Systems 40 (6)(2011), pp. 599-609, Taylor & Francis, 2011. 2 R. Belohlavek, Sup-t-norm and inf-residuum are one type of relational product: unifying framework and consequences, Fuzzy Sets and Systems, 2011.

3 B. De Baets, Analytical solution methods for fuzzy relation equations, In: The Handbook of Fuzzy Set Series Vol. 1, D. Dubois and H. Prade, Eds. Boston: Academic Kluwer Publ., pp. 291–340, 2000. 4 S. Gottwald, Calculi of Information Granules: Fuzzy Relational Equations. In: W. Pedrycz, A. Skowron and V. Kreinovich, eds. Handbook of Granular Computing. Chichester, UK: John Wiley & Sons, Ltd., 2002. 5 A., V. Markovskii, On the relation between equations with max-product composition and the covering problem. Fuzzy Sets and Systems, pp. 261–273, 2005.

