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Preliminaries
We need the following concepts introduced in [2].

Aggregation Structure

Definition 1. A sup-preserving aggregation structure
(aggregation structure, for short) 〈L1,L2,L3,�〉, where
Li = 〈Li,≤i〉, i = 1, 2, 3, are complete lattices and
� : L1 × L2→ L3 is a function which commutes with
suprema in both arguments. Define operations
◦� : L1 × L3→ L2, �◦ : L3 × L2→ L1 by

a1 ◦� a3 =
∨
2{a2 | a1� a2 ≤3 a3},

a3 �◦ a2 =
∨
1{a1 | a1� a2 ≤3 a3}.

Moreover, define operation op
�◦ : L3 × L2→ L1 (needed

only for scalar-by-scalar equations) by

a3
op
�◦ a2 =


∧

1{a1 | a1� a2 ≥3 a3}, if exists a1 ∈ L1 :
a1� a2 ≥3 a3,

02, otherwise.

Consider two important examples of aggreg. struct. In
both cases, 〈L,∧,∨,⊗,→, 0, 1〉 is a complete residuated
lattice. Li = L and ≤i is either ≤ or the dual of ≤.

Example 1.L1 = 〈L,≤〉, L2 = 〈L,≤〉, L3 = 〈L,≤〉, � = ⊗:

a1 ◦� a3 =
∨
{a2 | a1 ⊗ a2 ≤ a3} = a1→ a3,

a3 �◦ a2 =
∨
{a1 | a1 ⊗ a2 ≤ a3} = a3← a2.

Example 2.L1 = 〈L,≤〉, L2 = 〈L,≤−1〉, L3 = 〈L,≤−1〉,
� =→:

a1 ◦� a3 =
∧
{a2 | a1→ a2 ≥ a3} = a1 ⊗ a3,

a3 �◦ a2 =
∨
{a1 | a1→ a2 ≥ a3} = a3→ a2.

General Product of Fuzzy Relations
Definition 2. For an aggregation structure
〈L1,L2,L3,�〉, and fuzzy relations R ∈ LX×Y

1 , S ∈ LY×Z
2 ,

let a fuzzy relation R � S ∈ LX×Z
3 be defined by

(R � S)(x, z) =
∨

3 y∈Y
(R(x, y)�S(y, z)).

Product � generalizes both sup-t-norm product (◦) and
inf-residuum product (/):

:: for the setting of Example 1: R � S = R ◦ S,
:: for the setting of Example 2: R � S = R/S.

Definition 3. For R ∈ LX×Y
1 and S ∈ LY×Z

3 , let
R/� S ∈ LX×Z

2 and R�/ S ∈ LX×Z
1 be defined by

(R/� S)(x, z) =
∧

2 y∈Y
(R(x, y) ◦� S(y, z)),

(R�/ S)(x, z) =
∧

1 y∈Y
(R(x, y)�◦S(y, z)).

Fuzzy Relation Equations
Fuzzy relational equations play an important role in
fuzzy set theory and its applications. Namely, it is often
the case that the problem in a particular application of
fuzzy logic may be transformed to the problem of
identification an unknown fuzzy relation.

The problem to determine an unknown fuzzy relation R

between universe sets X and Y such that

R � S = T,

where S and T are given (known) fuzzy relations
between Y and Z, and X and Z, respectively, and � is
an operation of composition of fuzzy relations, is called
the problem of fuzzy relational equations. Alternatively,
given R and T , the problem is to determine S.

Denotation:

U � S = T and R � U = T,

where U is the unknown fuzzy relation.

Solvability Criteria
Theorem 4. Let R ∈ LX×Y

1 , S ∈ LY×Z
2 , and T ∈ LX×Z

3 be
fuzzy relations. Then
:: U � S = T has a solution iff T �/ S−1 is its solution,
:: R � U = T has a solution iff R−1 /� T is its solution.

Theorem 5. If an equation U � S = T is solvable then
the set of all solutions along with ⊆1 forms a complete
join-semilattice with the greatest element

T �/ S
−1.

If an equation R � U = T is solvable then the set of all
solutions along with ⊆2 forms a complete
join-semilattice with the greatest element

R−1 /� T.

Corollary 6. An equation U ◦ S = T is solvable iff
(S /T−1)−1 is its solution. An equation R ◦ U = T is
solvable iff R−1 / T is its solution.

All Solutions vs. Minimal Solutions
We assume two solutions R′, R′′ of U � S = T , and fuzzy
relation R ∈ LX×Y

1 such that R′ ⊆1 R ⊆1 R
′′. Since � is

isotone in both arguments, we can write

T = R′ � S ⊆1 R � S ⊆1 R
′′ � S = T,

which implies that R is a solution of U � S = T as well.

In other words, a set of all solutions of U � S = T w.r.t.
⊆1 is a convex set. Therefore, we just need to find all
minimal solutions.

Minimal Solutions
“Scalar-by-Scalar Equation”
Let u ∈ L1, s ∈ L2, t ∈ L3, define scalar-by-scalar
equation:

u� s = t. (1)
Theorem 7. If equation (1) is solvable then for every its
solution r ∈ L1 it holds r ∈ [t�◦ s, t op�◦ s].

Lemma 8. Let L1 be a finite chain. If there is a1 ∈ L1

such that a1� a2 ≥3 a3 then a1
op
�◦ a3 = a1 �◦ a3.

Corollary 9. Let L1 be a finite chain. Equation (1) is
solvable iff t�◦ s is its solution.

“Vector-by-Vector Equation”
Let (uj) ∈ LY

1 , (sj) ∈ LY
2 , t ∈ L3, j ∈ J = {1, . . . , n}, define

vector-by-vector equation:

(
u1. . .un

)
�

s1
...
sn

 = t. (2)

Theorem 10. Let L1 be a finite chain. If there is j′ ∈ J

such that uj′� sj′ = t is solvable then equation (2) has a
minimal solution R = (r1 . . . rn) such that

rj =

{
t�◦ sj, for j = j′,
01, otherwise.

“Vector-by-Matrix Equation”
Let (uj) ∈ LY

1 , (sjk) ∈ LY×Z
2 , (tk) ∈ LZ

3 , j ∈ J = {1, . . . , n},
k ∈ K = {1, . . . , p}, and L1 be a finite chain, define
vector-by-matrix equation:

(
u1. . .un

)
�

s11. . .s1p
... ...

sn1. . .snp

 =
(
t1. . .tp

)
. (3)

Equation (3) can be rewritten using a table T of
dimension (n+ 1)× p (meaning, the last row is ∨3 of the
rows above):

u1� s11 . . . u1� s1p
... ...

un� sn1 . . . un� snp

t1 . . . tp

Now, see what happen to the table T when we take
R = (r1 . . . rn) = T �/ S−1 (the greatest solution) as a
solution of (3).

For every j ∈ J there must be k′ ∈ K such that

rj =
∧

1 k∈K
(tk �◦ sjk) = tk′ �◦ sjk′.

By Kj we denote the set of all indices k′ ∈ K such that
uj � sjk′ = tk′ is solvable and rj = tk′ �◦ sjk′.

Minimal Solutions
Important assertions:
:: for each k′ ∈ Kj, rj = tk′ �◦ sjk′ is the only solution of

uj � sjk′ = tk′

:: for each k′′ ∈ K \Kj we have rj � sjk′′ <3 tk′′.

Define a binary table B of the dimension (n+ 1)× p:

Bjk =

{
1, if Tjk = tk,

0, if Tjk <3 tk.

Obviously, the last row of the table B is filled by ones.

Definition 11. Jcov ⊆ J is a covering of the last row of B
if maxj∈Jcov Bjk = 1 for all k ∈ K. Covering Jcov ⊆ J is a
minimal one if there is no covering J ′cov such that
J ′cov ⊆ Jcov.

Example 3. Assume an equation (3) with table T :
r1� s11 = t1 r1� s12 = t2 r1� s13<3 t3 r1� s14<3 t4
r2� s21<3 t1 r2� s22<3 t2 r2� s23 = t3 r2� s24 = t4
r3� s31 = t1 r3� s32<3 t2 r3� s33<3 t3 r3� s34 = t4
r4� s41<3 t1 r4� s42<3 t2 r4� s43 = t3 r4� s44<3 t4

t1 t2 t3 t4

Table B can be easily derived from T:
1 1 0 0
0 0 1 1
1 0 0 1
0 0 1 0
1 1 1 1

There exist several coverings, but just two of them are
the minimal ones: {1, 2}, {1, 3, 4}.

Theorem 12. Let (3) be an equation with R = (r1 . . . rn)
being the greatest solution. Every minimal solution
M = (m1 . . .mn) of (3) is in the form:

mj =

{
rj, for j ∈ Jcov,

01, otherwise,

where Jcov is a minimal covering of the last row of the
corresponding table B.

Minimal solutions of U ◦ S = T (sup-t-norm equation)
and U /S = T (inf-residuum equation) can be described
using direct consequencies of the previous results.

Future Research
:: developing algorithms, efficient computation of all

solutions (removing duplicities), complexity issues
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