Krajca P., Outrata J., Vychodil V.: Computing Formal Concepts by Attribute Sorting

Introduction

:: Formal concept analysis (FCA) is a method of tabular data analysis
:: used for data mining, knowledge discovery, information retrieval, data preprocessing
: input - object-attribute table, i.e., two dimensional table with rows representing objects, columns their attributes (features), where crosses indicate that particular object has particular attribute

Table 1.: Formal context
:: output - all maximal submatrices full of x 's present in table

- these submatrices are natural concepts hidden in the data (e.g., animal, fish)
- form a hierarchy (e.g., fish \leq animal)

Definitions
:: Formal context \mathbb{K} is a triplet $\langle X, Y, I\rangle$, where X and Y ar non-empty sets and $I \subseteq X \times Y$. ($X \ldots$ set of objects, Y \ldots set of attributes, $\langle x, y\rangle \in I \ldots$ object x has attribute y)
Concept-forming operators: For a formal context $\mathbb{K}=\langle X, Y, I\rangle$, operators $\uparrow_{\mathfrak{k}}: 2^{X} \rightarrow 2^{Y}$ and $\downarrow \mathfrak{k}: 2^{Y} \rightarrow 2^{X}$ are defined for every $A \subseteq X$ and $B \subseteq Y$ by:

$$
A^{\dagger_{\mathrm{K}}}=\{y \in Y \mid \text { for each } x \in A:\langle x, y\rangle \in I\},
$$

$B^{\downarrow \mathrm{K}}=\{x \in X \mid$ for each $y \in B:\langle x, y\rangle \in I\}$
$A^{{ }^{\uparrow K}} \ldots$ set of all attributes shared by all objects from A $B \downarrow \mathrm{k} \ldots$ set of all objects sharing all attributes from B

Formal concept in $\mathbb{K}=\langle X, Y, I\rangle$ is a pair $\langle A, B\rangle$ of $A \subseteq X$ and $B \subseteq Y$ such that $A^{\uparrow \mathrm{K}}=B$ and $B^{\downarrow \mathrm{K}}=A$

Preliminaries

R-context

: formal context derived from $\mathbb{K}=\langle X, Y, I\rangle$
:: attributes are pairs $\langle f l a g, B\rangle$ where B is a subset of Y, flag $\in \mathbb{N}_{0}$

Definition 1. Given a formal context $\mathbb{K}=\langle X, Y, I\rangle$, a triplet $\mathbb{K}^{\sharp}=\left\langle X^{\sharp}, Y^{\sharp}, I^{\sharp}\right\rangle$ is called an R-context (derived from \mathbb{K}) if the following conditions are satisfied:
(1) $X^{\sharp} \subseteq X$;
(2) $Y^{\sharp} \subseteq \mathbb{N}_{0} \times 2^{Y}$ such that for any $\left\langle n_{1}, B_{1}\right\rangle \in Y$ and $\left\langle n_{2}, B_{2}\right\rangle \in Y$ we have either that (a) $n_{1}=n_{2}$ and $B_{1}=B_{2} \neq \emptyset$ or (b) $B_{1} \neq \emptyset, B_{2} \neq \emptyset$, and $B_{1} \cap B_{2}=\emptyset$;
(3) for any $x \in X^{\sharp}$ and $\langle n, B\rangle \in Y^{\sharp}:\left\langle x, y_{1}\right\rangle \in I$ iff $\left\langle x, y_{2}\right\rangle \in I$ holds true for all $y_{1}, y_{2} \in B$;
(4) $I^{\sharp}=\left\{\langle x,\langle n, B\rangle\rangle \in X^{\sharp} \times Y^{\sharp} \mid\langle x, y\rangle \in I\right.$ for all $\left.y \in B\right\}$

Auxiliary definitions
: R-context derived from \mathbb{K} is called initial if $X^{\sharp}=X$
R-context derived from \mathbb{K} is
$Y^{\sharp}=\{\langle 0,\{y\}\rangle \mid y \in Y\}$, and
$I^{\sharp}=\left\{\langle x,\langle 0,\{y\}\rangle\rangle \in X^{\sharp} \times Y^{\sharp} \mid\langle x, y\rangle \in I\right\}$
$::\lfloor D\rfloor=\bigcup\{B \subseteq Y \mid\langle n, B\rangle \in D\}$, for any $D \subseteq Y^{\sharp}$
$: \operatorname{Int}\left(\mathbb{K}^{\sharp}, Y\right)=Y \backslash\left\lfloor Y^{\sharp}\right\rfloor$, for any \mathbb{K}^{\sharp} derived from formal context $\langle X, Y, I\rangle$

Clarification

:: formal context $\mathbb{K}=\langle X, Y, I\rangle$ is called clarified if for any $y_{1}, y_{2} \in Y$ it follows that $\left\{y_{1}\right\}^{\downarrow}=\left\{y_{2}\right\}^{\downarrow}$ implies $y_{1}=y_{2}$ and dually for any couple of objects

Definition 2. For any R-context $\mathbb{K}^{\sharp}=\left\langle X^{\sharp}, Y^{\sharp}, I^{\sharp}\right\rangle$, we define clarified context \mathbb{K}^{C} as a triplet $\left\langle X^{\mathrm{C}}, Y^{\mathrm{C}}, I^{\complement}\right\rangle$ where
(1) $X^{\complement}=X^{\sharp}$;
(2) $Y^{\complement}=\left\{\left\langle\sum\left\{n \in \mathbb{N}_{0} \mid\langle n, B\rangle \in[y]_{\left.\overline{E x}^{k}\right\}}\right\},\left[[y]=_{\bar{K}^{\sharp}}\right\rfloor\right\rangle \mid y \in Y^{\sharp}\right\}$,
(3) $I^{\complement}=\left\{\langle x,\langle n, B\rangle\rangle \in X^{\complement} \times Y^{\complement} \mid\right.$ there is $n^{\prime} \leq n$ and $B^{\prime} \subseteq$ B such that $\left.\left\langle x,\left\langle n^{\prime}, B^{\prime}\right\rangle\right\rangle \in I^{\sharp}\right\}$.

Table 2.: Example of clarified R-context

Algorithm

:: algorithms (Ganter, CbO, FCbO) compute some concepts multiple times (significant overhead)
observation: reordering of attributes according to their support reduces number of multiple times computed concepts
we consider a bijective map $f: Y^{\sharp} \rightarrow\left\{0, \ldots,\left|Y^{\sharp}\right|-1\right\}$ such that, for any $y_{1}, y_{2} \in Y^{\sharp}$,
if $f\left(y_{1}\right) \leq f\left(y_{2}\right)$ then $\left|\left\{y_{1}\right\}^{\downarrow_{k}}\right| \leq\left|\left\{y_{2}\right\}^{\gamma_{k}}\right|$.
:: f represents a position in an ordered list of attributes f represents a position in an ordered list of
which are sorted according to their support
map f along with flag plays the role of the canonicity test ensuring that each concept is returned only once
Sketch of the Algorithm
algorithm (procedure Compute) starts with a clarified initial R-context
computes closure for each attribute having zero flag
if closure does not contain any attribute with nonzero flag, it is used to derive new R-context
:: new context is clarified and flags are updated algorithm recursively applies procedure Compute

Procedure Compute $\left(\mathbb{K}^{\sharp}\right)$

store $\left\langle X^{\sharp}, \operatorname{Int}\left(\mathbb{K}^{\sharp}, Y\right)\right\rangle$
for $\langle n, B\rangle \in Y^{\sharp}$ do
if $n=0$ then
set $\langle C, D\rangle$ to $\left.\langle\langle n, B\rangle\rangle_{\left.\left.\mathrm{k}^{\ddagger},\langle n, B\rangle\right\rangle_{\mathrm{k}^{\ddagger}}\right\rangle}^{\text {if }}\right\rangle$
if $\sum\left\{n \in \mathbb{N}_{0} \mid\langle n, B\rangle \in D\right\}=0$ then $\operatorname{Compute}\left(\operatorname{Reduce}\left(\mathbb{K}^{\sharp}, C, D\right)\right)$
:: Reduce($\left.\mathbb{K}^{\sharp}, C, D\right)$ - returns clarified R-context such that
(1) $X^{\Re}=C$;
(2) $Y^{\Re}=\left\{\operatorname{Attr}(y) \mid y \in Y^{\sharp}\right.$ and $\left.y \notin D\right\}$, where $\operatorname{Attr}(y) \in \mathbb{N}_{0} \times 2^{Y}$ is defined by

$$
\operatorname{Attr}(\langle n, B\rangle)= \begin{cases}\langle | B|, B\rangle, & \text { if } n=0 \text { and } \\ \langle n, B\rangle, & \text { otherwise. }\end{cases}
$$

(3) $I^{\Re}=\left\{\langle x,\langle n, B\rangle\rangle \in X^{\Re} \times Y^{\mathfrak{\Re}} \mid\right.$ there is $n^{\prime} \leq n$ such that $\left.\left\langle x,\left\langle n^{\prime}, B\right\rangle\right\rangle \in I^{\sharp}\right\}$.
attribute $\langle 0, B\rangle \in Y^{\sharp}$ will be given a nonzero flag in Y^{\Re} if it is not in D and if it stays before $\min (D)$ in terms of the order of attributes

Complexity and Efficiency

Figure 1.: Invocations of the Compute procedure

Complexity

:: complexity: $O\left(|\mathcal{B}(X, Y, I)| \cdot|X| \cdot|Y|^{2}\right)$, where $\mathcal{B}(X, Y, I)$ is a set of all formal concepts in a formal context $\langle X, Y, I\rangle$
:: polynomial time delay: $O\left(|Y|^{3} \cdot|X|\right)$

Comparisons

	debian tags	anon. web.	mushroom
size	$14,315 \times 475$	$32,710 \times 295$	$8,124 \times 119$
density	$<1 \%$	1%	19%
\# concepts	38,977	129,009	238,710
Attr. sort.	44,221	135,925	246,181
FCbO (ord.)	298,641	398,147	299,201
FCbO	679,911	$1,475,341$	426,563
CbO (ord.)	960,106	785,394	$1,321,524$
CbO	$12,045,680$	$27,949,552$	$4,006,498$

Table 3.: Number of closures computed by selected algorithms from CbO family

	mean value	std. dev.	median value
CbO	$3,359.88$	505.51	3294
CbO (ord.)	$1,394.08$	78.19	1,395
FCbO	860.41	49.17	860
FCbO (ord.)	853.87	47.80	852
Attr. sort.	240.83	8.34	241
\# concepts	227.58	6.79	228

Table 4.: Computed closures in datasets $\mathbf{5 0 \times 5 0}$ with 10% density of 1 's
european social fund in th
czech republic

筷
UROPEAN UNIO
NISTRY OF EDUCATIO
YOUTH AND SPOATS

