Jan Laštovička: Example of Incomplete Concept Lattice

Introduction

In practice, we often have to deal with incomplete data. Concept lattices of incomplete data have been studied in [1] and [2]. This poster gives one example of concept lattices of incomplete data.
Formal Concept Analysis
A formal context is a triple $\langle X, Y, I\rangle$ where X is a set of objects, Y a set of attributes and $I \subseteq X \times Y$. For $\langle x, y\rangle \in I$ is said "The object x has the attribute y ".
For subsets $A \subseteq X$ and $B \subseteq Y$ we set
$A^{\uparrow}=\{y \in Y \mid$ for each $x \in A$ it holds $\langle x, y\rangle \in I\}$
$B^{\downarrow}=\{x \in X \mid$ for each $y \in B$ it holds $\langle x, y\rangle \in I\}$ If $A^{\uparrow}=B$ and $B^{\downarrow}=A$, then the pair $\langle A, B\rangle$ is called a forma concept of $\langle X, Y, I\rangle$. The set A is called the extent, B the intent of $\langle A, B\rangle$.
The set of all formal concepts is denoted by $\mathcal{B}(X, Y, I)$. A partial order \leq on the set $\mathcal{B}(X, Y, I)$ is defined by
$\left\langle A_{1}, B_{1}\right\rangle \leq\left\langle A_{2}, B_{2}\right\rangle \quad$ iff $\quad A_{1} \subseteq A_{2} \quad$ (iff $\left.B_{2} \subseteq B_{1}\right)$.
$\mathcal{B}(X, Y, I)$ together with \leq is a complete lattice and is called the concept lattice of $\langle X, Y, I\rangle$.

Formal Concept Analysis in Fuzzy Setting Let $\mathbf{L}=\langle L, \wedge, \mathrm{~V}, \otimes, \rightarrow, 0,1\rangle$ be a complete residuated lattice. An L-set A in universe X is a mapping $A: X \rightarrow L$.
The set of all L -sets in universe X is denoted by L^{X}
For two L -sets $A, B \in L^{X}$ we say that A is a subset of B and write $A \subseteq B$, if for each $x \in X$ it holds $A(x) \leq B(x)$. A formal L-context is a triple $\langle X, Y, I\rangle$, where X and Y are sets and $I: X \times Y \rightarrow L$. For L-sets $A \in L^{X}$ and $B \in L^{Y}$ we set

$$
\begin{aligned}
& A^{\uparrow}(y)=\bigwedge_{x \in X} A(x) \rightarrow I(x, y), \\
& B^{\downarrow}(x)=\bigwedge_{y \in Y} B(y) \rightarrow I(x, y) .
\end{aligned}
$$

An L-concept is a pair $\langle A, B\rangle \in L^{X} \times L^{Y}$ such that $A^{\uparrow}=B$ and $B^{\downarrow}=A$. The L-set A is called the extent, B the intent of $\langle A, B\rangle$.
An L-concept $\langle A, B\rangle \in \mathcal{B}(X, Y, I)$ is called crisply generated, if there is a crisp set $B_{0} \subseteq Y$ such that $A=\left(B_{0}\right) \downarrow$
The set of all crisply generated L -concepts is denoted by $\mathcal{B}_{c}(X, Y, I)$.
A partial order \leq on the set $\mathcal{B}_{c}(X, Y, I)$ is defined by
$\left\langle A_{1}, B_{1}\right\rangle \leq\left\langle A_{2}, B_{2}\right\rangle \quad$ iff $\quad A_{1} \subseteq A_{2} \quad$ (iff $\quad B_{2} \subseteq B_{1}$)
$\mathcal{B}_{c}(X, Y, I)$ together with \leq is a complete lattice.

Theory

Incomplete Contexts

Let $U=\left\{u_{1}, \ldots, u_{k}\right\}$ be a set of variables, $\mathbf{L}=\left\langle L, \wedge, \vee,{ }^{\prime}, 0,1\right\rangle$ be a finite Boolean algebra (BA), $\iota: U \rightarrow L$, such that \mathbf{L} is generated by $\iota(U)$. L together with ι is called a Boolean algebra with variables u_{1}, \ldots, u_{k}. Elements of \mathbf{L} can be viewed as terms, constructed from variables by means of operations of a Boolean algebra
Mappings v : $U \rightarrow \mathbf{2}$ are called assignments. Since \mathbf{L} is generated by $\iota(U)$, then for each assignment v there exists at most one homomorphism $\bar{v}: \mathbf{L} \rightarrow \mathbf{2}$, such that $v=\bar{v} \circ \iota$. If this omomorphism exists, then the assignment v is called admissible.
The class of Boolean algebras can be considered a subclass of the class of residuated lattices.
An incomplete \mathbf{L}-context is an \mathbf{L}-context $\langle X, Y, I\rangle$ such that $I(X \times Y) \subseteq U \cup\{0,1\}$.
An ordinary formal context $\langle X, Y, J\rangle$ is a completion of $\langle X, Y, I\rangle$, if $J=\bar{v} \circ I$ for an admissible assignment $v: U \rightarrow \mathbf{2}$.

Construction of BA with Variables The following holds for each subset $V \subseteq 2^{U}$ (known dependencies between variables).
(Generality) Let $\mathbf{L}=2^{V}$ and a mapping $\iota: U \rightarrow L$ be defined by $(\iota(u))(v)=v(u)$. Then for each $v \in V$ there is exactly one homomorphism $\bar{v}: \mathbf{L} \rightarrow \mathbf{2}$ such that $v=\bar{v} \circ \iota$.
$::$ (Efficiency) Let \mathbf{L}^{\prime} be a residuated lattice and $\iota^{\prime}: U \rightarrow L^{\prime}$ a mapping such that for each $v \in V$ there is
a homomorphism $\bar{v}^{\prime}: \mathbf{L}^{\prime} \rightarrow 2$ satisfying $v=\bar{v}^{\prime} \circ \iota^{\prime}$. Then there exists a surjective homomorphism of residuated lattices $s: L^{\prime} \rightarrow \mathbf{L}$ such that for each $v \in V$ it holds $\bar{v}^{\prime}=\bar{v} \circ s$
Incomplete Concept Lattices
Let $\langle X, Y, I\rangle$ be an incomplete L-context and v be an admissible assignment.
Then
: $\langle X, Y, \bar{v} \circ I\rangle$ is a completion of $\langle X, Y, I\rangle$,
: $\mathcal{B}(X, Y, \bar{v} \circ I)$ is a classical concept lattice,
$:$ mapping $\bar{v}_{c}(X, Y, I): \mathcal{B}_{c}(X, Y, I) \rightarrow \mathcal{B}(X, Y, \bar{v} \circ I)$ defined by $\bar{v}_{b_{c}(X, Y, I}(\langle A, B\rangle)=\langle\bar{v} \circ A, \bar{v} \circ B\rangle$ is a surjective, Λ-preserving complete homomorphism.

Example

The Festival Context
A group of people plans to visit some music festivals, we partially know their plans. We also know which festivals they have visited last summer. Considered festivals are Open Air Festival Trutnov (oaft), Colours of Ostrava (co), Rock for People (rp), Mighty Sounds (ms), Brutal Assault (ba) Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a set of variables, $V=\left\{v \in \mathbf{2}^{U} \mid v\left(u_{1}\right) \neq v\left(u_{2}\right)\right.$ and $\left.v\left(u_{3}\right) \leq v\left(u_{4}\right)\right\}$, where dependency $v\left(u_{1}\right) \neq v\left(u_{2}\right)$ means that the hippie woman will visit either CO or MS (she has not much money) and dependency $v\left(u_{3}\right) \leq v\left(u_{4}\right)$ means that the intellectual will visit OAF Future, let $\mathrm{L}=2$ be a Boolean algebra with variables $u_{1}, u_{2}, u_{3}, u_{4}$. Suppose
Let $\langle X, Y, I\rangle$ be an incomplete l-context (festival context):

The Festival Concept Lattice
Structure of $\mathcal{B}_{c}(X, Y, I)$ of the festival context:

Example

Concepts of the Festival Context
Let $A \in L^{X}$ be a L-set. If for all $x \in X$ distinct from $x_{1}, x_{2}, \ldots, x_{n}$ we have $A(x)=0$, we write $x_{1}, x_{2}, \ldots, x_{n}$ we have $A(x)=0$, we write
$\left\{A\left(x_{1}\right) / x_{1}, A\left(x_{2}\right) / x_{1}, \ldots, A\left(x_{n}\right) / x_{n}\right\}$. We write x instead of ${ }^{1 / x}$

Crisply generated L-concepts of the festival context:

Consider a crisply generated \mathbf{L}-concept

$\left\langle\left\{\mathrm{p}, \mathrm{h}, \mathrm{u}_{4} \mathrm{i}, u_{3} / \mathrm{r}\right\},\left\{\right.\right.$ oaft1,,$_{4}^{\prime} / \mathrm{ms} 1$, oaft2,,$\left.\left._{2} \wedge u_{4}^{\prime} / \mathrm{ms} 2\right\}\right\rangle$ and an admissible assignment v with $v\left(u_{1}\right)=v\left(u_{3}\right)=v\left(u_{4}\right)=0$ and $v\left(u_{2}\right)=1$.
$\overline{\mathcal{B}}^{\mathcal{B}_{c}(X, Y, I)}\left(\left\langle\left\{\mathrm{p}, \mathrm{h}, u_{4} / \mathrm{i}, u_{3} / \mathrm{r}\right\},\left\{\right.\right.\right.$ oaft $1, u_{4}^{\prime} / \mathrm{ms} 1$, oaft2, $\left.\left.\left.u_{2} \wedge u_{4}^{\prime} / \mathrm{ms} 2\right\}\right\rangle\right)$ $=\left\langle\bar{v} \circ\left\{\mathrm{p}, \mathrm{h},,_{4} / 1, u_{3} / \mathrm{r}\right\}, v \circ\left\{\right.\right.$ oaft1,,$u_{4} \mathrm{msl}$, oaft2, ${ }_{2}^{\left.\left.u_{2} \wedge u_{4} / \mathrm{ms} 2\right\}\right\rangle}$ $=\langle\{\mathrm{p}, \mathrm{h}\}$, \{oaft1, oaft2, ms1, ms2 $\}\rangle$ is a formal concept of a completion $\langle X, Y, \bar{v} \circ I\rangle$.

References

Krupka M. Lastovicka J.: Furzy concept latices with incomplete knowedge. In: S. Greco, B.

 Managenent of Uncerainy, firn 2012 , Catana, tlaty, Juy $9-$ July 13,2012
Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer (1999)
Belohlavek, R: Furzy Realitional Systems: Foundations and Principles. Kluwer Academic
Publiseses, Nowewl. USA (2002)
european social fund in the
czech republic

N
zech republic
EUROPEAN UNIO
STRY OF EDUCATION,
YOUTH AND SPORTS

