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Introduction
We present a graph-based method of reasoning with if-then
rules describing dependencies between graded attributes. The
rules are usually written as expressions A⇒ B, where A and
B are fuzzy sets of attributes, and have two basic
interpretations:

:: Attribute implications in formal fuzzy context:
“If it is (very) true that an object has all attributes from
A, then it has also all attributes from B.”

:: Fuzzy functional dependencies in similarity-based
relational databases:
“For any two objects (rows): if they have (very) similar
values on attributes from A then they have similar values
on attributes from B”.

What those two interpretations have in
common?

:: same syntax (although different interpretation)

:: same notion of semantic entailment

:: single inference system can be used

Armstrong-like axiomatic system (L finite, Y set of attributes,
A,B,C,D ∈ LY ):

(Ax) infer A∪B ⇒ B

(Cut) from A⇒ B and B∪C ⇒ D infer A∪C ⇒ D

(Mul) from A⇒ B infer c∗⊗A⇒ c∗⊗B,

Two kind of completeness can be shown:

:: Ordinary completeness

• Theory T - set of if-then rules

• A⇒ B is provable from T iff A⇒ B semantically
follows from T (in degree 1)

:: Graded (Pavelka-style) completeness

• Theory T - fuzzy set of if-then rules

• A degree to which A⇒ B is provable from T equals to
degree to which A⇒ B semantically follows from T .

Maier (2) proposed graph-based approach in order to
normalize proof for reasoning with (ordinary) func-
tional dependencies in relational databases. Can this
approach be extended for graded if-then rules? YES.

Derivation Digraphs for graded
if-then rules
:: acyclic digraphs

:: vertices are attributes from Y

:: arcs correspond to if-then rules used from an input theory

:: construction:
every set of unconnected vertices is derivation diagram
new vertex for attribute y is added to graph if the validity
of y resulting from T is strictly higher then the degree y

has in the current state of graph, formally:

T -based L∗-derivation diagram (DAG):
Let L∗ = 〈L,∧,∨,⊗,→, ∗, 0, 1〉 be be complete residuated
lattice with a truth-stressing hedge, T be a set of graded
if-then rules over Y .

1) Any D = 〈V, ∅〉 such that ∅ 6= V ⊆ Y × L is a T -based
L∗-derivation DAG;

2) If D = 〈V,A〉 is a T -based L∗-derivation DAG and there
are E ⇒ F ∈ T , attribute y ∈ Y , and vertices
〈y1, a1〉 ∈ V, . . . , 〈yk, ak〉 ∈ V such that for

s0 =
∧
{E(y)→ 0 | y ∈ Y and y 6∈ {y1, . . . , yk}},

s1 =
∧
{E(yi)→ ai | i = 1, . . . , k},

m =
∨
{a ∈ L | 〈y, a〉 ∈ V },

d =
(
(s0 ∧ s1)

∗ ⊗ F (y)
)
∨m,

we have d > m > 0, then D′ = 〈V ′, A′〉, where

V ′ = V ∪ {〈y, d〉},
A′ = A ∪ {〈〈yi, ai〉, 〈y, d〉〉 | i = 1, . . . , k},

is a T -based L∗-derivation DAG.

One step in construction of DAG

:: L∗: finite linearly ordered  Lukasiewicz algebra with
L = {0, 0.1, . . . , 0.9, 1} ⊆ [0, 1], ∧ and ∨ usual minima and
maxima, ⊗,→  Lukasiewicz operations, ∗ identity.

:: set of initial vertices: {〈y1, 0.7〉, 〈y2, 0.7〉}
theory: T = {. . . , {0.7/y1, 0.8/y2} ⇒ {0.6/y3}, . . .}

:: adding vertex 〈0.5, y3〉

0.7/y1

0.7/y2

0.7/y1

0.7/y2

0.5/y3

s0 = 1
s1 = 0.9
m = 0
d = (0.9⊗ 0.6)∗

= 0.5

Completeness
For T -based L∗-derivation DAG D we have:
:: yield of D on attribute y: D(y) =

∨
{a ∈ L | 〈y, a〉 ∈ V }

:: D is called a T -based L∗-derivation DAG for E ⇒ F if
{〈y, E(y)〉 | y ∈ Y and E(y) > 0} is the set of initial
vertices of D and D(y) ≥ F (y) for all y ∈ Y .

Results

Let T be a theory (set of if-then rules)
:: If T ` A⇒ B (using (Ax),(Cut),(Mul)), then there is a

T -based L∗-derivation DAG for A⇒ B.

:: If there is a T -based L∗-derivation DAG for A⇒ B, then
T ` A⇒ B.

:: If L is finite, then A⇒ B semantically follows from theory
T in degree 1 iff there is a T -based L∗-derivation DAG for
A⇒ B.

:: If L is finite, then ||A⇒ B||T is the greatest degree a ∈ L

such that there is a T -based L∗-derivation DAG for
A⇒ a⊗B.

Example

We demonstrate here how to obtain a proof from a T -based
L∗-derivation DAG. Assume we have a theory T :

T = {{0.7/y3} ⇒ {1/y4}, {0.7/y1, 0.8/y2} ⇒ {0.6/y3},
{0.6/y1, 0.9/y3} ⇒ {0.9/y5, 0.1/y6},
{0.5/y2, 0.6/y4} ⇒ {0.7/y6}}

and consider A = {0.7/y1, 0.7/y2}, B = {0.6/y4, 0.6/y6}.

Does ||A⇒ B||T = 1? YES, since there is T -based
L∗-derivation DAG for A⇒ B:

0.7/y1

0.7/y2

0.5/y3
0.8/y4

0.5/y5

0.7/y6

:: set of initial vertices is equal to A

:: B(y) ≤ D(y) for all y ∈ B

The following sequence is a part of the corresponding proof
for A⇒ B using derivation rules (Ax), (Cut), (Mul) and
derived rules projectivity and additivity.

Corresponding Proof

1){0.7/y1, 0.7/y2} ⇒ {0.7/y1, 0.7/y2} (Ax)

2){0.7/y1, 0.8/y2} ⇒ {0.6/y3} ∈ T

3){0.6/y1, 0.7/y2} ⇒ {0.5/y3} (Mul) on 2)

4){0.7/y1, 0.7/y2} ⇒ {0.6/y1, 0.7/y2} (Ax)

5){0.7/y1, 0.7/y2} ⇒ {0.5/y3} (Cut)

6){0.7/y1, 0.7/y2} ⇒ {0.7/y1, 0.7/y2, 0.5/y3} (Add)

7){0.7/y3} ⇒ {1/y4} ∈ T

8){0.5/y3} ⇒ {0.8/y4} (Mul) on 7)

. . . . . .

20){0.7/y1, 0.7/y2} ⇒ {0.6/y4, 0.6/y6}

Conclusions

:: graph-based inference for graded if-then rules

:: degrees of semantic entailment of fuzzy attribute
implication (fuzzy functional dependency) from a theory -
fuzzy set of fuzzy attribute implication (fuzzy functional
dependencies) can be characterized by the existence of
directed acyclic graphs

Future work

:: further properties of diagram, complexity issues

:: characterization of syntactic closures via DAG

:: algorithm for computing closures
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